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1 The BiSSE model

We consider a model for particles of two types – type 0 and type 1. At time t there are N(t) =
N0(t) + N1(t) particles, where Ni(t), i = 0, 1, is the number of type i particles. Each particle can
split (with constant rate λi), die (with constant rate µi) or change type (with constant rate qi1−i)
independently of all the other particles. Initially there is a single particle of type either 0 or 1. This
is a discrete–state–continuous–time–Markov–chain, which is concisely described by its transitions

(N0(t+ ∆t), N1(t+ ∆t)) =


(N0(t) + 1, N1(t)− 1) with probability q10N1(t)∆t+ o(∆t)
(N0(t)− 1, N1(t) + 1) −“− q01N0(t)∆t+ o(∆t)

(N0(t) + 1, N1(t)) −“− λ0N0(t)∆t+ o(∆t)
(N0(t), N1(t) + 1) −“− λ1N1(t)∆t+ o(∆t)

other change −“− o(∆t)
(1)

Let pn0,n1(t) be the probability that N0(t) = n0 and N1(t) = n1. From Eq. (1) we obtain the
following infinite system of ODEs:

p′n0,n1
(t) = − ((q01 + λ0)n0 + (q10 + λ1)n1) pn0,n1(t)

+q10(n1 + 1)pn0−1,n1+1(t) + q01(n0 + 1)pn0+1,n1−1(t)
+λ0(n0 − 1)pn0−1,n1(t) + λ1(n1 − 1)pn0,n1−1(t).

(2)

Using Eq. (2) we can write down [see e.g. p.69 Bailey, 1964] the probability generating function
for (N0, N1),

G(z0, z1, t) = E
[
z
N0(t)
0 z

N1(t)
1

]
=
∑
n0,n1

pn0,n1(t)z
n0
0 zn1

1 . (3)

The probability generating function of our system is the solution to the PDE,

∂G

∂t
= −

(
(q01(z0 − z1) + λ0z0(1− z0))

∂G

∂z0

+ (q10(z1 − z0) + λ1z1(1− z1))
∂G

∂z1

)
(4)
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or in vector form,

∂G

∂t
= − (q01(z0 − z1) + λ0z0(1− z0), q10(z1 − z0) + λ1z1(1− z1)) ·DzG,

with initial conditions,
G(z0, z1, 0) = p10(0)z0 + p01(0)z1,
∂
∂z0
G(0, z1, t) = p1,0(t),

∂
∂z1
G(z0, 0, t) = p0,1(t).

(5)

We recognize this as a transport equation and using the technique presented in §2.1 by Evans [1998]
we write

z(s) = G(h(s, z0, z1), t+ s), s ∈ R

where the function h(s, z0, z1) : R3 → R2 is such that

z′(s) = DzG(h(s, z0, z1), t+ s) · h′(s, z0, z1) +G′t(h(s, z0, z1), t+ s) = 0.

This entails that,

dh0(s,z0,z1)
ds

= −(−λ0h0(s, z0, z1)2 + (λ0 + q01)h0(s, z0, z1)− q01h1(s, z0, z1))
dh1(s,z0,z1)

ds
= −(−λ1h1(s, z0, z1)2 + (λ1 + q10)h1(s, z0, z1)− q10h0(s, z0, z1))

with initial condition h(0, z0, z1) = (z0, z1). Assuming we could solve the above system and find h,
then the probability generating function G will be

G(z0, z1, t) = p10(0)h0(−t, z0, z1) + p01(0)h1(−t, z0, z1). (6)

Since the quadratic system of ODEs for h does not seem to have a closed form solution, the likelihood
of the system is intractable. Therefore, estimation software for the BiSSE–type models [FitzJohn,
2010, 2012, Maddison et al., 2007, FitzJohn et al., 2009] evaluates the likelihood through a numerical
solution of an appropriate ODE system.

However, we can use Eq. (2) to find equations for all the moments of the system. In particular,
the first and second order moments satisfy the linear system of ODEs

E [N0(t)]′

E [N1(t)]′

E [N2
0 (t)]

′

E [N2
1 (t)]

′

E [N0(t)N1(t)]′

 =


λ0 − q10 q10 0 0 0
q01 λ1 − q10 0 0 0

λ0 + q01 q10 2(λ0 − q01) 0 2q10

q01 λ1 + q10 0 2(λ1 − q10) 2q01

−q01 −q10 q01 q10 λ0 + λ1 − q01 − q10




E [N0(t)]
E [N1(t)]
E [N2

0 (t)]
E [N2

1 (t)]
E [N0(t)N1(t)]

 .
(7)

2 Almost sure limit

Even though the likelihood is not tractable in closed form, Janson [2004] characterized the almost
sure behaviour and provided central limit theorems for such multitype branching processes of which
the BiSSE model is a particular case. Further notable results for similar models are due to Jagers
[1969], Sagitov and Serra [2009], Yakovlev and Yanev [2009, 2010], Antal and Krapivsky [2010].
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It is worth pointing out that when one of the transition rates (either q01 or q10) is 0, then Antal
and Krapivsky [2010] found a closed form expression for the likelihood. We now describe [following
Janson, 2004] the almost sure behaviour of the BiSSE process. In particular it tells us how the
process will stabilize, and what proportion of type 0 and type 1 particles are expected after long
time.

We first introduce two key matrices related to the BiSSE model. These two matrices summarize
the average behaviour of the model. The first is the mean offspring matrix,

Mo =

[
λ0 − q01 q01

q10 λ1 − q10

]
that comes from the ODE system of Eq. (7).

The second more important for us is derived from the mean change matrix [as considered by
Janson, 2004]

Mc =

[
λ0−q01
λ0+q01

q01
λ0+q01

q10
λ1+q10

λ1−q10
λ1+q10

]
.

Mc stems from how the system can change, if type 0 is drawn, then the change is one of {(1, 0), (−1, 1)}
and if type 1 then {(1,−1), (0, 1)}, with the conditional probabilities clearly seen in Mc. Entry i, j
of Mc tells us by how much (in expectation) will the population of j–types change if an individual
of type i split. We further introduce an activity vector

a =
(
λ0 + q01, λ1 + q10

)
whose entries give us the respective intensities of lifetimes of types 0 and 1, or alternatively, given
that an event occurred, the probability that it concerned type i is aiNi(t)/(a0N0(t) + a1N1(t)).
Following [Janson, 2004] we introduce the matrix

A := [A(i, j)]2i,j=1 = [a(j)Mc(j, i)]
2
i,j=1

which equals

A =

[
λ0 − q01 q10

q01 λ1 − q10

]
.

The eigenvalues of A are

γ− = 1
2

(
λ0 + λ1 − q01 − q10 −

√
(λ0 − λ1 − q01 + q10)2 + 4q01q10

)
,

γ+ = 1
2

(
λ0 + λ1 − q01 − q10 +

√
(λ0 − λ1 − q01 + q10)2 + 4q01q10

)
≥ 0,

and the right eigenvectors

ṽ− =
(
− 1

2q01

(
λ1 − λ0 + q01 − q10 +

√
(λ0 − λ1 − q01 + q10)2 + 4q01q10

)
, 1
)
,

ṽ+ =
(
− 1

2q01

(
λ1 − λ0 + q01 − q10 −

√
(λ0 − λ1 − q01 + q10)2 + 4q01q10

)
, 1
)
.

Let us introduce the following notation

D = λ1 + λ0 − q01 − q10,
H = λ0 − λ1 − q01 + q10,

∆ = (λ0 − λ1 − q01 + q10)2 + 4q01q10 = H2 + 4q01q10 ≥ 0,
S = λ0 + λ1 + q01 + q10.
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Now the eigenvalues can be written as,

γ− = 1
2

(
D −

√
∆
)
,

γ+ = 1
2

(
D +

√
∆
)
≥ 0.

The right eigenvectors (as returned by Mathematica 9.0, for Linux x86 (64–bit) running on Ubuntu
12.04.5 LTS, when ∆ 6= 0) are

ṽ− =
(

1
2q01

(
H −

√
∆
)
, 1
)
,

ṽ+ =
(

1
2q01

(
H +

√
∆
)
, 1
)
.

The left eigenvectors (calculated as P−T , where P is the matrix whose columns are A’s right
eigenvectors and when ∆ 6= 0) are

ũ− =
(
−q01√

∆
,
√

∆+H
2
√

∆

)
,

ũ+ =
(
q01√

∆
,
√

∆−H
2
√

∆

)
.

We can immediately see that γ+ is the dominating eigenvalue and it has to be positive (0 only in the
degenerate case of all model parameters equalling 0) which on the other hand is obvious as Mc is a
strictly positive matrix. Athreya and Ney [2004], Janson [2004] consider normalized eigenvectors,

u+ · v+ = 1 v+ · a = 1

[Athreya and Ney, 2004, had a = (1, 1)]. Mathematica already returns eigenvectors such that
ṽ+ · ũ+ = 1 so it remains to normalize ṽ+. We have

ṽ+ · a =
λ0 + q01

2q01

(
H +

√
∆
)

+ λ1 + q10 = B

and now define

v+ =
1

B
ṽ+ u+ = Bũ+.

Athreya and Ney [2004] provide us with the following results.

Theorem 2.1. [Thm 2 Ch 7.5 Athreya and Ney, 2004]

lim
t→∞

(N0(t), N1(t))e−γ+t = Wv+

where W is a random variable with expectation equalling v+(i), i = 0, 1 depending on the initial
type.

We now explicitly list the assumptions that Janson [2004] makes about the branching multitype
branching process.

(A1) If a branching event occurs in a type i particle, the resulting number of type i particles may
decrease by at most 1 while the number of particles of any other type can only increase.
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(A2) The second moment of the change in type j particles, given that type i was affected, is finite.

(A3) The largest eigenvalue, γ+, of A is positive.

(A4) The largest eigenvalue, γ+, of A is simple.

(A5) There exists a dominating type i, i.e. a type such that Ni(0) > 0. In our case it means that
we will condition on the root being in a given state.

(A6) The eigenvalue, γ+, belongs to the dominating type. We say a type i is dominating if for
every type j there is a possibility to find a type j eventually if we start with a single type i.
In our case this means that both transition rates are positive.

Given assumptions (A1)–(A6) we translate Janson [2004]’s Theorem 3.15, concerning the limit
frequencies, to the BiSSE model case. Notice that all of the six assumptions are met in the BiSSE
model case. Let (b0, b1) =: b ∈ R2 and z ≥ 0 and define the stopping time

τb(z) := min{t ≥ 0 : b · (N0(t), N1(t)) ≥ z},

i.e. the first time b0N0(t) + b1N1(t) exceeds z. In particular taking z = n and b = (1, 1) gives us
the first time when there are n contemporary species. Obviously as γ+ > 0 and we assumed no
extinction we have N0(t) +N1(t)→∞ almost surely.

Theorem 2.2. [cf. Theorem 3.15 Janson, 2004] Under assumptions (A1)–(A6)

n−1(N0(τ(1,1)(n)), N1(τ(1,1)(n)))
1

−−−→ (v0, v1)/(v0 + v1) =

(
H +

√
∆

H +
√

∆ + 2q01

,
2q01

H +
√

∆ + 2q01

)
.

This limit is the same as in the unconditioned case [Ch. 1, Thm 8.3 Mode, 1971]. By uncodi-
tioned we mean that time goes to infinity and the number of species N(t) is a random process.
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